

A COMPARISON STUDY OF SUMMER-SEASON LAND SURFACE CLIMATOLOGY IN CFSV2 WITH THREE CFS RUNS USING DIFFERENT ATMOSPHERE AND OCEAN MODELS

Rongqian Yang, Michael Ek and Jesse Meng
The EMC Land/Hydro Team

EMC/NCEP/NWS 5200 Auth Road, Camp Springs, MD 20746, USA

CFSv2 Evaluation Workshop April 30 – May 1, 2012 College Park, Maryland

OBJECTIVES

 Compare the differences in predicted warm season surface characteristics between the CFS runs.

Examine the impact of upgrades on ocean, land and atmosphere and their relative importance on predicted climatology and prediction skills.

THE NEW NCEP CFS V2

Atmosphere

T62/L28 - T126/L64 (~100 km) resolution and equipped with more advanced physics

Land

upgraded from the 2-layer OSU to the 4-layer Noah LSM.

Sea Ice

Introduction of a 3-layer global

Sea Ice Model

The horizontal reased from 0.33° to 10° from 1.0° to 10° from 1.0° to 10° elsewhere globally

Fully Coupled Ocean-Land-Atmosphere System, implemented in March, 2011

CFS COMPARISON

1982-2004 (23 summers)

CFSv2 CMIP ICs (12) T126/L64

0421, 0426, 0501 (4 cycles) Op3t3 CFS

AMIP ICs (10) T126/L64

041900 -042300 042900-050300 Op3t3 CFS

CMIP ICs (10) T126/L64

041900-042300 042900-050300 CFSv1

CMIP

ICs (10)

T62/L28

041900 -042300 042900-050300

The Op3t3 CFS shares the same ocean model used in the CFSv1 The CFSv2 shares the same Noah land model used in Op3t3 CFS

Self consistent initial conditions (Mid-April to Early May)

<u>CFSv2 --- from CFSR; Op3t3 CFS - from offline GLDAS; CFSv1 - GR2</u>

Focus on June, July and August Average (JJA)

WHAT WE CAN LEARN?

- Identify the relative importance of each component from a variety of upgrades and potential problems.
- Determine the direction for future improvement.

SST, PRECIPITATION, AND T2M COMPARED TO OBSERVATIONS

SST SKILL

CFSv2 -CMIP CFSv2 - CFSv1 JJA CFSv2-CMIP CFSv2 vs CMIP CFSv2 vs CMIP -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 60N 🚗 50N 40N 20N ton-CMIP-CFSv1 10S 208 JJA CMIP-CFSv1 CFSv2 vs CFSv1 95% confidence CFSv2 vs CFSv1 30N 1.68 20N ton. EQ. 1.301 10S 0.2 0.4 0.6 **Significance Test**

PRECIPITATION - OBSERVATION

PRECIPITATION DIFFERENCE

PRECIPITATION SIGNIFICANCE

T2M - OBSERVATION

T2M DIFFERENCE

T2M SKILL

T2M SKILL SIGNIFICANCE

DOWNWARD RADIATION (RDOWN) AND NET RADIATION (RNET) COMPARED TO

The NASA/GEWEX Surface Radiation Budget (SRB)
Release-3.0 data

As a reference

RDOWN - SRB

RDOWN DIFFERENCE

RNET - SRB

RNET DIFFERENCE

LATENT HEAT, SENSIBLE HEAT AND SOIL MOISTURE COMPARED TO

Global Land Data Assimilation System (GLDAS) using the same Noah land model

As a benchmark

LHTFL- GLDAS

LHTFL DIFFERENCE

CFSv1 – due to higher precip, CFSv2, slightly higher precip and rnet compared CMIP and AMIP

SHTFL DIFFERENCE

SM DIFFERENCE

SUMMARY

1. Compared to CFSv1

CFSv2 Better tropical SST

Reduced high precipitation bias over the N.H.
Slightly better precipitation skill over Europe-Asia.
Better T2m and higher prediction skill Europe-Asia
Better downward and net radiation

Less latent heat and sensible heat

Higher soil moisture and closer to GLDAS

2. Compared to CMIP

CFSv2

sst performance varies depending on the Nino regions high precipitation bias over the N.H., low bias over the S.H. Lower precipitation skill over the S.A. Better T2m, but no clear advantage on the skill Less Rdown but higher Rnet over the N.H. and lower in the S.H. More latent heat and less sensible heat and soil moisture.

3. Compared to AMIP

CFSv2 Similar to CMIP

4. AMIP compared to CMIP

AMIP tends to perform worse, no big difference

SUMMARY (CONT'D)

- Overall, the CFSv2 has achieved a large improvement over the CFSv1 from the ocean, land and atmosphere upgrades.
- ➤ The atmosphere upgrade in CFSv2 seems to be more important, especially to radiation and resulted T2m prediction. Both CFSv2 and Op3t3 CFS has low sensitivity to ocean boundary.